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The solution of problems on the fracture of solids under the action of 
impulsive dynamic loadings encounters great difficulties. Even before 

the onset of fracture the process becomes very complicated because 

different parts of the body are governed by different “stress-strain” 
relation, and the position of the boundaries between these parts changes 

with time. When cracks appear, which lead to new time-dependent boundary 

conditions, one cannot even speak of any kind of rigorous solution of the 
problem. 

This paper is concerned with the study of dynamic stresses in a medium 
obeying Hooke’s law. In materials whose elastic limit and ultimate 

strength are close to one another (under dynamic loading) such studies 
can identify points from which the formation of cracks in the first stage 
of fracture will originate. If, however, there exists a noticeable in- 

terval between the elastic limit and the ultimate strength, where the 
material is subjected to some inelastic deformations, then these studies 
can identify instants of time and parts of the body where dangerous 

stresses can be expected with the greatest probability. 

The rigorous solution also becomes useful in the evaluation of some 
approximate theories found in the literature. It shows, for instance, 
that the acoustic theory [ 1,2 ] is inadequate and the quasi-static theory 

[S 1 is limited in its applicability. 

Dynamic problems of the theory of elasticity in the case of a half- 

space, a single-layer or a multi-layered medium with plane-parallel 
separation boundaries were studied in many papers. A major portion of 
these papers is devoted to the development and also the the qualitative 
and quantitative study of formulas for the displacement-vector components. 
The transition to stresses somewhat complicates the solutions. This com- 

plication. however, is unimportant in analogous studies. 
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1. Let us introduce cylindrical coordinates r, 8, z, Assme that a 
normal unit force, which varies in time as 

E (t) = 0 npn t<o, E (t) = 1 npx t > 0 (1.1) 

is applied at the plate boundary z = 0 at the point F = 0, z = 0, and 
the boundary z = h is stress-free. At the beginning this will cause the 
formation of direct longitudinal p-waves and transverse s-waves, which 
characterize the wave-field in a half-space z > 0. 

After impinging upon the boundary z = h, the p-wave produces a re- 
flected longitudinal pp- and a transverse ps-wave. The s-wave, on the 
other hand, forms correspondingly a longitudinal sp- and a transverse 
ss-wave. At the next instant there will take place a reflection from the 
boudary z = 0 and then again from the boundary z = h, etc. 

For brevity and convenience of comparing the obtained results with 
the results of previous papers [ 1.2.4 1 devoted to the explanation of 
spalling phenomena, let us study for the time being dynamic processes 
along the axis of symmetry and limit ourselves to the analysis only of 
the direct waves p and 8, and also the reflected pp-, ps-, sp- and ss- 
waves. 

It should be noted that the above-mentioned waves were studied by 
Zvolinskii. However, he evaluated asymptotically the stress field only 
in the neighborhood of the wave-front. Such estimates can he justified 
to any extent only for points that lie at distances from the origin con- 
siderably greater than the wave-length. Quantitative studies of waves of 
such kind in a layer lying on a liquid half-space are contained in 14 1. 
However, in this paper as well as in [ 1.2 I, which were devoted to 
acoustic problems, a number of inaccuracies were admitted, which caused 
incorrect calculations of the wave-field intensities. 

Formulas for the displacement-vector components, corresponding to 
different waves, can be written imnediately, for instance, according to 
[51, in the form of double integrals. After carrying out the differenta- 
tion under the integral sign (the permissibility of which was repeatedly 
discussed in papers by Petrashen’) and using the Lame’ formulas, one 
could easily obtain expressions for the stresses. Finally, after repre- 
senting these expressions in terms of single integrals 16 1 along a con- 
tour I which runs along the imaginary axis in the right half-plane of the 
complex variable 4, and letting r = 0, we find the principal stress oZ 
in the following form: 

For incident waves (p + s) 
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i a 
az=miz g2 2aP 

2C2 R [btc- za] - C2R [bt L - zp] & 
I 

(l-2) 

For reflected waves (pp + ps + sp + ss) 

--1 a 
02=2n2biat S{ g2 T W4 

2t2 R2 [bt C - (2h - z) a] - 52 R2 [bt c -ha - (h -2) !3] - 
1 

4g2 4 2a$T - 
t2Rz [bt L - h!3 - (h - z) a] + C2R2 [bt C - (2h - z) p] dT (1.3) 

where 

+= v- I- 20 
2 (I- 5) ’ a = 1/l + r2t2, p =1/l $-t2 

g = 2 + c2, R=g2-4a,P, T = g2 + 4ap 
(1.4) 

and where b represents the velocity of propagation of transverse waves, 

a is the velocity of propagation of longitudinal waves and o is Poisson's 

ratio. As was shown in [5 I, the branches of the radicals a and @ should 

be fixed by the conditions 

arga= argp =0 npn 1;>0 (1.5) 

2. Let us introduce the following notation 

T = bt 1 h, k=z/h 

(pI = $ - ka, cp2 = % - k-p 

cpQ = st - (2 -k) a, (p4= rT, - a - (1 -k) p 

rps = d - p - (1 - k) a, ‘pa= st - (2 - k) p 

x1 = E (T - ky), x,=~(s-k) 

x3 = E [T - (2 -k) 71, xp = E [,K - (7 -+ 1 - k)] 

x6 = E [T - 1 --(I -k) y], x6 =E [T - (2 -k)] 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Let us place the factor h-' in (1.2) and (1.3) before the integral 

sign and carry out the integration by residues at points &, of the right- 

hand half-plane [, which are real roots of the corresponding equations 

‘p, VJ = 0 (u = 1, 2, 3, 4, 5, ti) (2.8) 

where q+,,([> are determined from (2.2) to (2.4). 

If we assume that 

(2.9) 
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we obtain for the direct [incident I (p + $1 waves 

0, = - 
c-c, 

where 
r_ 
‘I - f,“:k27’ ’ 

k 
‘2 = I/l.2-k2 

(2.10) 

(2.11) 

By using the equations 

we obtain for the reflected (pp + ps + sp + ss) waves 

1 8 
uz = iiF & 

4a2pag2 
+t -X4 [ (I- k) a + fJ] CR2 c=c,- 

- x6 [a + (:““T fi] CR2 

Here 

cs= - 
‘r/ 7%: (2 f-k)” ra 

(2.14) 

(2.15) 

L. 

I,=( -k [7a--(i-k)%] (2-k) -It_ (k2-2k+2) ++2 (I-k) z v++k (1-7*)(2-k) 
74 - 2 [ 7* + (1, - k)21+ + [ 7” - (I- k)21s 

a (2 16) . 

1 
- k ii - 7* (1- k)aI (2 -k) + (kB--2k+2) @+2(1-k) r 1/T2-k(l-r2) (2 - kl 2 

96 = 74-.2[1+‘7~(i-k)2]~2+[~-7B(1-k)2]2 
(2.17) 

(2.18) 

lhe computation of the expressions in the braces of formulas (2.10) 
and (2.14) can be accomplished as well as the computation of the dis- 
placements 17 1. 

Note that the values of 5, and 6 can practically most be conveniently 
found not from Formulas (2.16) and 2.17) but directly from the equations ? 
q5h = 0, & = 0 by tabulating the functions r (r4), r (5,). 

Similarly, we obtain equations for the other tm principal stresses 
u r and u8 along the axis of symnetry: 
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In the case of direct waves 

1 a 
U,=CJag=---_ 

xh’ k ih 
x1 ag I(1 - 27’) t2 - fl a? 

2FR Z-Z, --% a-r (2.19) 

In the case of reflected waves 

t a 
4=ae=,~a< x32--_ i 

1 ga ((1 .. 272) tz - 11 7 
Ii_<, +- x4 

2gwp 
2tR= I(1 --Wa+BIW F-L- 

/igaW I(1 - 279 C2 - i] 
-x6 

I 

1 ap* T 
[a -/. (I-- k) 31 IRS <=:I - x6c--_ CR” (2.20) 

3. NOW we shall study the stresses (2.101 and (2.141 and compare then 

with the corresponding stresses which result from the acoustic theory. 

An exact expression for the latter can be easily obtained from Formulas 

(2.10) and (2.14) if all but the first terms in these formulas are dis- 

carded, a limiting process b -+ 0 is performed, and it is assumed that the 

derivative Of K1 and K J (in the generalized sense) represents the Dirac 

delta-function. l’his expression has the following form: 

For direct waves 

(3.1) 

For reflected waves 

i ’ - 
Ir (2 --- k) 

0 
.-t ’ 6 (t- h(2a-k))} (3.2) 

ah (2 - k) 

where according to the notation (2.1) 

irk = z, il(2- li) :-- 2 h - Z 

Note that in these fornulas the inaccuracies tolerated in [ 1,2 1 have 

been corrected. 

For the convenience of comparison we carry out the differentation in 

(2.101 and (2.141. There we shall assume that 

(3.3) 

Ihen, taking into account (2.9), (2.12) and (2.131, and also assuming 

that 5, at the front of the vth wave approaches infinity, one can rewrite 
Formulas (2.101 and (2.141 in the form 
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(3.5) 

It can easily be verified that only terms containing the Dirac delta- 

function coincide in the compared formulas at the front of the p- and 

pp-waves. After the passage of the above-mentioned fronts, Equations 

(3.11 and (3.21 maintain a constant value at the same time as (3.4) and 

(3.5) turn out to be variable functions of time, where (3.4) has a dis- 

continuity of the type of a finite jump at the instant of the passage of 

the transverse s-wave, and (3.5) at the instant of the passage of the 

converted ps- and sp-waves and the transverse s-wave. ‘lhe magnitude of 

these finite jumps at the front of the transverse and converted waves 

and also the magnitudes of the stresses itnnediately behind the fronts of 

the longitudinal waves can be easily determined from (3.41 and (3.51 by 

a limiting process & + CXJ . 

Let us study in some greater detail the direct [incident 1 waves. 

After passing to the limit in Formula (3.4) and taking into account de- 

tailed calculations of the displacement field, which were performed in 

[7 I, one can describe schematically the change of the stress uz along 

the axis of symmetry in the following manner. After passing the front of 

the p-wave (with a singularity of the type of the Dirac delta-function) 

the stress becomes imnediately (1 + 8y3 ) times greater than the acoustic 

approximation (3.1). After that the stress grows monotonically with time, 

say, parabolically, and up to the instant of the introduction of the 

transverse s-wave it reaches a value of a magnitude several times greater 

than the original one. At the time of a passage of the transverse s-wave- 

front the stress u drops by a step to 8y of the values of (3.1) and 
then varies smoothly. Quickly it reaches a value near the static stress, 

which is equal to three times the value of (3.1). 

The acoustic approximation can be regarded as a particular case of the 
dynamic theory of elasticity, and thus its application to solids should 
already on the basis of the performed calculations be considered inadmis- 
sible. 
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In the following, however, the stresses from the acoustic approxima- 
tion will still be used in order to draw, by means of simple examples, 
a better qualitative picture of a number of phenomena which take place 
in solids but are described by more complicated formulas. The calcula- 
tions by means of these formulas do not present great difficulties, and 
they can be carried out to an arbitrary degree of accuracy if necessary. 

4. In order to utilize the study of the wave-fields for practical 
applications it is still necessary to perform a transition from the 
solution aZ(t ), which was obtained considering (1.11, to the solution 
oZ*(t), which corresponds to an n arbitrary” physically reasonable load- 
ing P(t) applied at the instant t = 0. Such a transition can be performed 
by means of the well-known formula 

uz* (t) = s uz (u) P’ (t - u)du 
0 

It should be noted that, depending on the relations between the dura- 
tion of the action T, the instant to of the introduction of the longi- 
tudinal wave and the time t, the integral (4.1) is being evaluated 
differently. In the case t > (t, + T 1 the lower limit in (4.1) has to 
be rep1 aced by (t - T), since for u > t and u < (t - T) the equation 
P’ (t - (I) = 0 holds. In the case t < (t, + 79, however, the value of the 
integral (4.1) is given in two terms. The first term corresponds to the 
integration along the segment t,, + 0, t, since oZ(u) = 0 at u < t Here, 
the symbol t, + 0 denotes that the point t = to at which there ex!&.s a 
singularity, is excluded from the interval of integration. The second 
term, on the other hand, is equal to the integral of the expression 
which contains the Dirac delta-function 6(u - t,) as a factor. If aZ(u) 
has the initial value op (u) equal to zero for u < to, then the second 
term will be equal to ozo(t,,) P’(t - t,). From this it follows that the 
solution (4.11 should contain the same singularities as the derivative 
of the source function P(t 1. In order to obtain physically sensible con- 
tinuous values of o Z*(t) (which do not even have a discontinuity of the 
type of a finite jump) it is necessary to require continuity not only of 
the function P(t) but also of its derivative P’(t). Such a limitation on 
the function P(t), which is usually determined from experiment, is 
entirely permissible. Even with as concentrated loadings as one may de- 
sire, the pressure itself and the rate of change of the pressure can be 
assumed to vary smoothly during some intervals of time that are some- 
times unnoticeable to the experimenter. The assumptions of strictly con- 
centrated and instantaneous (jvnp-like) changes of the loadings P(t) 
(and sometimes also their derivatives) are allowable as an intermediate 
stage in mathematical abstractions in a theoretical study of practical 
problems. 
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In the solution of ‘complicated problems of the dynamic theory of 
elasticity it is inconvenient to use Formula (4.1) since uz(u) contains, 
for instance in (3.4) and (3.51, derivatives of quite complicated ex- 
pressions. lhe initial values oz O(u), however, which appear in the solu- 
tions as derivatives (2.10) and (2.14) differ from the corresponding 
displacement solutions of the problems by very simple multipliers. It is 
easier to handle them not only because they can be more easily calculated, 
but also because one can use the results of analyses performed in terms 
of displacements. 

Let us assume for the sake of simplicity that P’(O) = P’(T) = 0 and 
perform the integration in (4.1) by parts. As a result of this we obtain 
a formula which is convenient for numerical integration and which differs 
from (4.1) by the fact that it contains in the integrand the initial 
value o O(u) instead of oz(u) and the second derivative P” (t - u) in- 
stead o? P’(t - u). 

‘lhus, in the case t < (t,, + T), the stress can be written in the 
following tm forms: 

(4.2) 

In the case t > (t,, + T), on the other hand, the lower limit of inte- 
gration in (4.2) is automatically replaced by (t - 7’1 and the term 
Ozo(to) P’lt y FO 1 goes to zero, since the function P and its derivatives 
are equal to zero if (t - u) > 7’ and (t - t,) > T. In the solution of 
the acoustic problem, however, we find for direct waves from (3.2) and 
(4.1) 

uz’(t) = -&{qt-$)+-p(d)} (4.3) 

‘lhe formula for reflected waves differs from (4.3) by the sign and 
the pressure of the parameter (2 h - z) instead of z. 

5. Let us take as an example a continuous loading P(t) of a duration 
(c + d) in the form of a broken line 
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(5.1) 

If c is much smaller than d this line can be assumed to correspond 

basically to P(t) load-curves measured in impacts and explosions. Of 

course, the function (5.1) cannot be attributed to a physically sensible 

loading since it has finite discontinuities of derivatives at t = 0, 
t = c and t = (c + cl). 'Ihis will lead to the result that the correspond- 

ing stress field will have discontinuities of the type of a finite jump. 

However, if we agree to smooth out slightly the corners of line (5.1) 

we do not admit a large error if we retain the previous stress-field but 

only replace the above-mentioned jumps by continuous, rapidly varying, 

monotonic curves similar to the jumps. 

'Ihe form of the loading (5.1) is favorable also for the following 

reasons. First, by means of limiting process c + 0 one can obtain a solu- 

tion for a loading with an instantaneous increase of the load, as 

assumed in I1,2,4 1, and compare our solution with solutions obtained in 

these references. Second, for such a loading the integral (4.1) is used 

in finite form, since in the integrand P'(t - u) takes on only constant 

values, and in a,(u) the initial value 0," (u), which is always known, is, 

as a rule, simpler than a,(u) itself, 

Indeed, from (5.1) we obtain 

I 

/ 

(0 < t < c) 
P' (t) = 

- f E (t - C) fc<t<c+dj 
I 

where 1~ denotes the function (1.1). After replacing t in (5.2) by (t - u) 

and then substituting (5.2) into (4.1), where by oz(u) one understands 

d;/au, and assuming that in the lower limit for u < ta, where to is the 

instant of the introduction of'the front, the initial value is zero, we 

find the basic solution formulas 
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ftcf,f 

(f.<f<f,fcf 

(t.+c<t< r,+c+a + 
(3.3) 

ft,fc+d<f) 

By means of these general formulas, or, more simply, by the substitu- 
tion of (5.1) and (5.2) into (4.31 we find the following for the direct 
waves in the acoustic approximations: 

By combining (5.4) with a similar formula for reflected waves one can 
calculate the total stress-field at any point as a function of time t. 

One can see from (5.4) that at the head of the wave-front there exist 
only compressive stresses which reach their maximum values at t = z/a+ c. 
After a reflection from the boundary z = h, a similar tensile stress is 
formed. For small c these stresses are very large, and for c = 0 they 
contain a singularity of the type of a Dirac de1 ta- function. 

Noqe that in [ 1,2,4 I the part of the wave-field that goes over to 
the Dirac de1 ta-function for c + 0 is not taken into account. The maximum 
tensile stresses computed from Formula (5.4) appear at the tail of the 
front. However, depending on the choice of P(t) they may be absent or may 
appear somewhere in the middle of the front. 

It muld be easy to cowute the stresses by means of Formulas (5.3) 
and (2.10) for solid media along the axis of symmetry. In this calcula- 
tion a term urould appear which would contain the derivative P’(t - z/a), 
just as in (4.31. The remaining part of the wave-field muld agree in 
sign, but it would not coincide in its form (depending on zl with the 
first term of (4.3). It muld be at least 2 to 3 times greater in in- 
tensity than this term. ?he stresses in a solid have only some qualita- 
tive resemblance to the stresses in the acoustic approximation. 

lhere is no reason to doubt that the tensile stresses in the reflected 
wave play a fundamental role in the formation of rear spalling. The 
fo~ation of face spalling, however, cannot be studied ~t~~o~t a know- 
ledge of the exact form of th e function IYt 1 and without considering sur- 
face and transverse waves away from the z-axis, where they are more in- 
tensive than along the z-axis according to [ 7 1. 
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6. In the analysis of problems of fracture caused by dynamic loadings 
one attempts sometimes [ 3 1 to bring in a so-called quasi-static solution 
which represents the product of the static solution and the loading 
function P(t); Such an approach to the problem is, of course, completely 
justified if P(t) changes smoothly during a sufficiently long period of 
time T. Then, at every moment t = t* the stress field in the medium will 
b ’ e approximately equal to that static state which would prevail under a 
constant load P(t’). In the case of sharply varying P(t), however, the 
possibility of using the quasi-static solution can in each given case be 
justified or discarded only after computing the stresses by means of a 
rigorous dynamic theory of elasticity for the given loadings, boundary 
conditions and distances from the source of vibrations. 

At first, let us study the particular case of a medium in which the 
shear modulus u is close to zerO, and we shall analyze only the stress- 
field of the direct waves. For p -t 0 it coincides, as was already 
mentioned, with the acoustic solution (4.3). 

The acoustic solution contains the conditional “quasi-static” part of 
the wave-field clearly as the first term of Formula (4.3). It propagates 
with the speed a and varies with distance as z -*. From 

one can judge by how much the second tenn of (4.3) is smaller than the 
first. 

Of course, this relation is as small as is desired for arbitrary t 
for sufficiently small z and continuous P’(t)/P(t). 

In the case of the solid medium (for p # 0) the stress formulas con- 
tain the part of the wave-field which is equal to the second term in 
(4.3) in an explicit fon. ‘Ihe quasi-static solution clearly does not 
appear explicitly in the formulas of the stress-field in the half-space. 
For an exact comparison with the quasi-static solution one should compute 
this field for given P(t). 

As a rough estimate, however, on the basis of the analysis of stresses 
perfoned above and of the displacement graphs given in [7 1 , one can 
assume it to be equal to a doubled field along the axis of symmetry in 
an infinite medium [ 8 ] . 

Note that analyses of a free layer reported in this paper are also 
easily applied to multi-layered media. In the particular case of such 
media, if one layer borders on a liquid or solid half-space, all formulas 
derived above remain correct if, in the tens in braces of (2.14) and 
(2.191, one introduces, according to [ 5 1, additional factors which 
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contain the coefficients of reflection from the interface boundary. 

Note, also, that if the functions +,,((> - l/nh are introduced instead 
of the functions of the form (2.2) to (2.41, these formulas will corre- 
spond to a bell-like distribution, depending on n, of the loading along 
the boundary 16 1. 

In conclusion, I express my deep gratitutde to G.I. Petrashen' for a 

number of valuable suggestions and advice contributing to an improvement 
of the paper. 
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